
ResistingSYN flood DoSattackswith a SYN cache

JonathanLemon jlemon@FreeBSD.org

FreeBSD Project

Abstract

Machinesthat provide TCP servicesareoften suscepti-
ble to varioustypesof Denial of Serviceattacksfrom
external hostson the network. One particular type of
attack is known as a SYN flood, whereexternal hosts
attemptto overwhelmthe server machineby sendinga
constantstreamof TCPconnectionrequests,forcing the
serverto allocateresourcesfor eachnew connectionuntil
all resourcesareexhausted.This paperdiscussesseveral
approachesfor dealingwith theexhaustionproblem,in-
cludingSYN cachesandSYN cookies.Theadvantages
anddrawbacksof eachapproacharepresented,andthe
implementationof thespecificsolutionusedin FreeBSD
is analyzed.

1 Intr oduction

TheInternettodayis drivenby machinesthatcommuni-
cateusingserviceslayeredon top of the TCP/IPproto-
cols,theseincludeHTTP, ftp andssh,amongothers.The
accessibilityof theseservicesis dependenton how well
theunderlyingtransportprotocolperforms,which in this
caseis TCP. If TCPis unableor unavailableto deliverthe
layeredserviceto a remotemachine,the userperceives
the site asbeingdeador inaccessible.Perhapsmerely
aninconveniencein thepast,this is amuchmoreserious
problemtodayasmachinesarebeingusedfor commerce
andbusiness.

Onewaythatamalicioushostcanattemptto deny ser-
vicesprovidedby a servermachineis by sendinga large
numberof TCPopenrequests.Theseareknown asSYN
packets,namedafter the specificbit in the TCP speci-
fication, hencethis type of Denial of Serviceattackis
oftencalledSYN bombingor SYN flooding. Whenthe
server receivesthis packet, it is interpretedasa request
by the remotehost to initiate a TCP connection,andat
thispoint, theOSontheservermachinecommonlyallo-
catesresourcesto tracktheTCPstate.By sendingthese

requestsin rapidsuccession,anattacker canexhaustthe
resourceson themachineto thepoint whereit becomes
unresponsive,or crashes.

The server can attemptto reducethe impact of the
floodingby changingtheresourceallocationstrategy that
it uses.Oneapproachis to allocateminimal statewhen
theinitial requestis received,andonly allocateall there-
sourcesrequiredwhentheconnectionis completed;this
is termeda SYN cache. Another approachis to allo-
catenostate,but insteadsendacryptographicsecretback
to the originator, calleda cookie;hencethe nameSYN
cookie. Both approachesare intendedto allow the ma-
chineto continueto provide its servicesto valid users.

The rest of this paperis structuredas follows: Sec-
tion 2 examinesthe details involved in the SYN flood
Denial of Serviceattacksandexaminesthe approaches
of differentdefenses.Section3 detailstheexperimental
setupusedfor testing,while Section4 describesthecur-
rentsystembehavior andmotivationfor change.Section
5 discussestheSYN cacheimplementationandpresents
the performancemeasurementsfrom the change,while
Section6 doesthe samefor SYN cookies. Section7
discussesrelatedwork, andthe paperconcludeswith a
summaryin Section8.

2 TCP Denial of Service

A traditionalTCP3 wayhandshakefor establishingcon-
nectionsis shown in Figure1, wherestateis allocatedon
theserversideuponreceiptof theSYN to hold informa-
tion associatedwith theincompleteconnection.Thegoal
of a SYN flood is to tie up resourceson the server ma-
chine,sothatit is unableto respondto legitimateconnec-
tions. This is accomplishedby having theclient discard
thereturningSYN,ACK from theserverandnotsendthe
final ACK. This resultsin theserver retainingthepartial
statethatwasallocatedfrom theinitial SYN.

Theattacker doesnot necessarilyhave to beon a fast
machineor network to accomplishthis. StandardTCP

incomplete

SYN,ACK

ACK

SYN

serverclient

connection
initiate

connection
complete

connection
complete

connection

Figure1: StandardTCP3 wayhandshake.

will not time out connectionsuntil a certainnumberof
retransmitshave beenmade,which usuallyis a total of
511 seconds[7]. Assuminga machinepermitsa max-
imum of 1024 incompleteconnectionsper socket, this
meansanattackerhasonly to send2 connectionattempts
per secondto exhaustall allocatedresources.In prac-
tice, this doesnot form a DoSattack,asexisting incom-
pleteconnectionsaredroppedwhena new SYN request
is received. The time requiredfor the server to send
a SYN,ACK andhave the client reply is known as the
round trip time (RTT); if an ACK arrivesat the server
but doesnotfind acorrespondingincompleteconnection
state,theserverwill not establisha connection.By forc-
ing the server to drop incompleteconnectionstateat a
ratelargerthantheRTT, anattacker is ableto insurethat
no connectionsareableto complete.

Eachconnectionis droppedwith
�����

probability, and
if thegoalis to recycleeveryconnectionbeforetheaver-
ageRTT, anattackerwould needto flood themachineat
a rateof

�����	�
�
packetspersecond.For a listenqueue

sizeof 1024,anda 100millisecondRTT, this resultsin
about10,000packetsper second.A minimal sizeTCP
packet is 64 bytes,so the total bandwidthusedis only
4Mb/second,within therealmof practicality.

As thesendermayforgetheir sourceIP address,a de-
fensethat relieson filtering packetsbasedon thesource
IP will not be effective in all cases. Using a random
sourceIP addresswill alsocausemore resourcesto be
tied up on the server if a per-IP routestructureis allo-
cated.

Oftenit is notpossibleto distinguishattacksfrom real
connectionattempts,otherthanby observingthevolume
of SYNs that arearriving at the server, so the machine
needsto beableto handlethemin somefashion.

In order to defend againstthis type of attack, the
amountof the amountof statethat is allocatedshould

be reduced,or even eliminatedcompletelyby delaying
allocationuntil theconnectionis completed.Two known
approachesto do thisareknown asSYN cacheandSYN
cookies. The cachingapproachis similar to the exist-
ing behavior, but allocatesamuchsmallerstatestructure
to recordtheinitial connectionrequest,while thecookie
approachattemptsto encodethestatein asmallquantity
which is returnedby theclientwhentheTCPhandshake
is completed.

2.1 Defenses

SYN cachingallocatessomestateon the machine,but
even with this reducedstateit is possibleto encounter
resourceexhaustion.Thecodemustbepreparedto han-
dle stateoverflows and choosewhich items to drop in
orderto preserve fairness.

Theinitial SYN requestcarriesacollectionof options
which apply the TCP connection,thesecommonly in-
cludethedesiredMSS,requestedwindow scalingfor the
connection,useof timestamps,andvariousotheritems.
Partof thepurposeof theallocatedstateis to recordthese
options,which arenot retransmittedin the returnACK
from theclient.

SYN cookiesdo not storeany stateon the machine,
but keepall stateregardingtheinitial TCPconnectionin
thenetwork, treatingit asaninfinitely deepqueue.This
is doneby useof a cryptographicfunction to encodeall
informationinto a valuethatis sentto theclientwith the
SYN,ACK andreturnedto theserver in thefinal portion
of the 3 way handshake. While this approachappears
attractive,it hasthedrawbackof notbeingableto encode
all theTCPoptionsfrom theinitial SYN into thecookie.
Theseoptionsare then lost, denying the useof certain
TCPperformanceenhancements.

A secondaryproblem relatedto cookiesis that the
TCP protocol requiresunacknowledgeddata to be re-
transmitted. The server is supposedto retransmitthe
SYN,ACK beforegiving up and droppingthe connec-
tion, whereupona RST is sentto the client in order to
shutdown the connection.WhenSYN,ACK arrivesat a
clientbut thereturnACK is lost,thisresultsin adisparity
abouttheestablishedstatebetweentheclientandserver.
Ordinarily, this casewill be handledby server retrans-
mits, but in the caseof SYN cookies,thereis no state
kepton theserver, anda retransmissionis not possible.

SYN cookiesalso have the property that the entire
connectionestablishmentis performedby the returning
ACK, independentof theprecedingSYN andSYN,ACK
transmissions.This opensthepossibilityof floodingthe
server with ACK requests,in hopesthat one will con-
tain the correctvalue which allows a connectionto be
established.This also providesan approachto bypass
firewalls which restrictexternalconnectionsby filtering

out incomingpacketswhich have theSYN bit set,since
initial SYN packet is no longer requiredto establisha
connection.

Another difficulty with cookies is that they are in-
compatiblewith transactionalTCP[6]. T/TCPworksby
sendingmonotonicallyincreasingsequencenumbersto
thepeerin theTCPoptionsfield, andusespreviouslyre-
ceivedsequencenumbersto establishconnectionson the
initial SYN, eliminatingthe3 wayhandshake. However,
useof theT/TCPsequencenumbersis mandatoryoncea
TCPconnectionis initiated,andthis requirestheserver
to recordthe initial sequencenumber, andwhetherthe
T/TCPoptionwasrequested.

Thuscookiescannotbeusedasthenormalline of de-
fensein a high performanceserver. Theusualapproach
is to useastateallocationmechanism,andfall backto us-
ing cookiesonly aftera certainamountof statehasbeen
allocated. This is the approachtaken by the the Linux
kernelimplementation.

3 Experimental Setup

The code base used was FreeBSD 4.4-stable, from
sourcesasof November14th,2001.Thetargetmachine
usedfor testingwas an Intel PIII/850, with 320MB of
memory, andwasequippedwith anonboardIntel Ether-
Express100Mb/schip,anIntel 1000/ProGigabitadapter
and a NetGearGA620 Gigabit adapter. The NetGear
adapterwasattacheddirectly to a secondmachinethat
actedasa packet source,while theIntel adapterwasdi-
rectly attachedto a third machinethatactedasa packet
sink. A fourth machinewasconnectedvia the 100Mb
portandwasusedfor takingtiming measurementsof real
connectionrequeststo thetestmachine.

A default route was installed on the test ma-
chine so that all incoming traffic from the source
was sent out to the sink via the other gigabit link.
The kern.ipc.somaxconnparameter, which controlsthe
maximum listen backlog, was raised to 1024, while
net.inet.tcp.mslwas turneddown to 30 millisecondsin
ordernot to run out of TCPports.Mbufsandmbuf clus-
terswereset to 65536and16384respectively, and the
systemwasmonitoredto insurethat thembuf limit was
not reached.

WhenSYN flooding the box, the sourcewasconfig-
uredto generateSYN packetsata rateof 15,000packets
persecond.This ratewaschosenasa load that thebox
could reasonablyhandlewithout becomingsusceptible
to receiver livelock. Underthis load, the box washan-
dling upwardsof 30,000packetsper second,incoming
andoutgoing.Thesourceaddressesof theSYN packets
wererandomlychosenfrom the10.x.x.xsubnet,andthe
sourceport numbersandISSwerealsorandomlygener-
ated.

A small programthat acceptedandclosedincoming
connectionswasrunonthetestmachine,in orderto pro-
vide a listensocket for incomingpackets. Timing mea-
surementswere taken on the control machinethat was
attachedto the100Mbport,which involvedtaking2000
samplesof the amountof time requiredfor a connect()
call to completeto thetargetmachine.

4 Moti vation

Initial testswereperformedon thetargetmachineusing
an unmodified4.4-stablekernelwhile undergoingSYN
flooding.Thesizeof thelistensocketbacklogwasvaried
from thedefault128entriesto 1024entries,aspermitted
by kern.ipc.somaxconn.The resultsof the testarepre-
sentedin Figure2.

In this test,with a backlogof 128 connections,90%
of the 2000connectionsinitiated to the target machine
completewithin 500ms.Whentheapplicationspecifies
a backlogof 1024connectionsin the listen() call, only
2.5%of theconnectionscompletewithin thesametime
period.

Thedropoff in performanceheremaybeattributedto
thefactthat thesodropablereq()functiondoesnot scale.
Thegoalof this function is to provide a randomdropof
incompleteconnectionsfrom thelistenqueue,in orderto
insurefairness.

However, thequeueis keptonalinearlist, andin order
to drop a randomelement,a list traversalis requiredto
reachthe target element. This meansthat on average,�����

of the total length of the queuemust be traversed
to reachtheelement;for a listenqueuebacklogof 1024
elements,this leadsto anaverageof ����� ������������������� , or
768elementstraversedfor eachincomingSYN.

Profiling resultsshow that in this particularcase,the
systemspends30% of its time in sodropablereq(),and
subjectively, is almost completelyunresponsive. Ex-
amining the graph,we seethat thereis a considerable
dropoff in performancebetweenthebacklogcasesof 768
entriesand1024entries,the reasonof which is unclear.
It is likely thatthereis a ’knee’ in theperformancecurve
is betweenthesepoints,andsystemmayhave reacheda
pointof saturation.

For the rest of the paper, a listen queuebacklogof
1024entriesis used,asthis is a realisticvalueusedon
productionsystems[4]. It alsoservesto illustratetheper-
formancegainsfrom asyncacheor syncookieimplemen-
tation.

4.1 Implementation

The new implementationfor FreeBSDprovidesa SYN
cacheas the first approachfor handlingincomingcon-
nections, and has every connectionpassthrough the

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

�

microseconds

Time needed to connect() to RELENG_4 system

backlog = 128
backlog = 256
backlog = 512
backlog = 768

backlog = 1024

Figure 2: Time neededto connect()to a RELENG 4 systemundera SYN flood attack. The kern.ipc.somaxconn
parameteron theremotemachinewassetto 1024,andthesizeof thelistenbacklogwasvariedfor eachrun.

cache. If an existing entry in the cacheneedsto be
evicted, a sysctl tunablecontrolsthe optional behavior
of sendingbackaSYN cookieinsteadof evicting theen-
try from thecache.In thefollowing discussion,first the
implementationof thesyncachewill bepresented,inde-
pendentof syncookies,with thenext sectionexplaining
how syncookiesmodify thebehavior of thesyncache.

5 SYN Cache

The syncacheimplementationreplacesthe per-socket
linear chain of incompletequeuedconnectionswith a
global hashtable,which provides two forms of protec-
tion againstrunningout of resources.Thesearea limit
onthethetotalnumberof entriesin thetable,whichpro-
videsanupperboundon theamountof memorythat the
syncachetakesup,andalimit onthenumberof entriesin
a givenhashbucket. Thelatter limit boundstheamount
of time that themachineneedsto spendsearchingfor a
matchingentry, as well as limiting replacementof the
cacheentriesto asubsetof theentirecache.A globalta-
blewaschoseninsteadof aper-sockettableasit wasfelt
thiswouldbeamoreefficientuseof systemresources.A
currentimplementationrestrictionthatall kernelvirtual
addressspacefor thememoryusedat interrupttimemust
bepre-allocatedwasalsoa factorin this decision.

Oneof themajorbottlenecksin theoriginal codewas
the randomdrop implementationfrom the linear list,

which did not scale. This bottleneckavoided in the
syncache,sincethe queueis split amonghashbuckets,
which arethentreatedasFIFO queuesinsteadof using
randomdrop. Another way of viewing this is to con-
sidertheoriginal linearlist partitionedup into a number
of sublistsequivalentto thesizeof thehashtable,where
choosinga bucketenablesusto choosewhich sectionof
the list to drop. Sincethe hashdistribution acrossthe
bucketsshouldbeuniform,this is anapproximatemodel
of choosinga randomlist entryto drop.

The hashvalue is computedon the incomingpacket
using the sourceand destinationaddresses,the source
anddestinationport,anda randomlychosensecret.This
valueis thenusedasan index into a hashtable,where
syncacheentriesarekepton a linkedlist in eachbucket.
The secretis usedto perturbthe hashvalueso that an
attacker cannottarget a specifichashbucket and deny
serviceto a specificmachine.

While on the surfaceit may appearthat an attacker
could implementa DoS by targeting a hashbucket so
thata legitimateconnectiondoesnot resideon thequeue
longenoughto establishaconnection,therisksaremigi-
tatedby the useof the hashsecret. Additionally, since
the port numberof the connectingmachineis usedin
thehashcalculations,a secondconnectionattemptfrom
theclientmachinetendsto resultin asecondhashbucket
chosen,furtherstymingany attemptby anattackerto tar-
geta specificbucket.

0

20

40

60

80

100

0 200 400 600 800 1000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

�

microseconds

Time needed to connect() to remote system

syncache, idle
syncache, SYN flooded

RELENG_4, idle
RELENG_4, SYN flooded

Figure3: Timeneededto connect()to remotesystem.

If theentryis not foundin thebucket,a new syncache
entry is createdandaddedto the cache. If the new en-
try would overflow the per-bucket limit, the oldesten-
try within that bucket is dropped. If the total number
of entriesin the cacheis exceeded,the oldestentry in
thecacheis dropped.This way, both thememoryusage
of the syncacheandthe amountof CPUtime neededto
searchthe hashtablearebounded.The useris able to
controlthesizingof theselimits via thefollowing loader
tunablesestablishedat boottime:

net.inet.tcp.syncache.hashsize
net.inet.tcp.syncache.cachelimit
net.inet.tcp.syncache.bucketlimit

Thecachelimit settingdeterminesthemaximumnum-
berof syncacheentriesthatmaybeallocated,andbounds
the overall memoryusageof the system.hashsize con-
trolsthesizeof thehashtableandshouldbeapowerof 2.
Finally, bucketlimit capsthesizeof eachhashchain,and
limits thenumberof entriesthatmustbesearchedwhen
lookingfor amatchingSYN entry. However, asthelist is
handledin FIFO order, anentrymuststayon thelist for
at leastoneroundtrip time(RTT) to theremotesystemin
orderto successfullyestablishaconnection,sothis must
beconsideredwhenchoosingavaluefor bucketlimit.

Therearetwo additionalsysctlparametersof interest:

net.inet.tcp.syncache.count
net.inet.tcp.syncache.rexmtlimit

The first entry is read-only, and indicateshow many
entriesarecurrentlypresentin the syncache.The sec-
onddetermineshow many timesa SYN,ACK shouldbe
retransmittedto the remotesystem,and defaults to 3.
Threeretransmitscorrespondsto

�	����� �!�#"%$&��'
seconds,andtheoddsarethat if a connectioncannotbe
establishedby then,theuserhasgivenup.

5.1 Syncacheperformance

Thesyncachetestswereperformedonthetargetmachine
using the following systemdefault values: hashsize=
512, cachelimit= 15359,bucketlimit = 30. The results
of thetestarepresentedin Figure3.

As thegraphshows, thesyncacheis effective at han-
dling aSYN floodwhile still allowing incomingconnec-
tions. Here,99%of the incomingconnectionsarecom-
pletedwithin 300 microseconds,which is on par with
the time requiredto connectto an idle unmodifiedsys-
tem. For comparison,theperformanceof anunmodified
systemexperiencinga SYN flood is alsoshown. All of
the trials in the testwereperformedwith a listen queue
lengthof 1024.

One interestingresult is that the connectionlatency
decreaseseven whenthe target box is not experiencing
SYN flooding. This is shown by comparingthe ’syn-
cacheidle’ and ’RELENG 4 idle’ lines on the graph,
which indicatehow long it takesto connectto a quies-
centsystem.This resultmaybeattributedto thesmaller

(A)0

peer iss

idx

MD5(laddr, faddr, lport, fport, secret)

Figure5: Layersof datain thesyncookie.

datastructureusedto hold the syncache,asthe sizeof
theTCPandsocketstructuresallocatedandinitializedon
anunmodifiedsystemtotal 736bytes,while thesmaller
syncachestructureis only 160bytes.

6 SYN Cookies

Whenasyncachebucketdoesoverflow, a fallbackmech-
anismexistswhich permitssendingbacka SYN cookie
insteadof performingoldestFIFOdropof anentryonthe
hashlist. This sectionexplainsthesyncookieapproach,
andoutlineshow thecookieis constructed.

Thecookieis sentto theremotesystemasthesystem’s
Initial SequenceNumber(ISN), andthenreturnedin the
final phaseof TCP’s threeway handshake. As connec-
tion establishmentis performedby thereturningACK, a
secretshouldbe usedto validatethe connection,which
is concealedfrom the remotesystemby useof a non-
invertiblehash.To preventan intermediatesystemfrom
collectingcookiesandreplayingthemat a laterdate,the
cookieshouldalsocontaina time component.The so-
lution chosenherewasto keepa tableof secretswhich
have a boundedlifetime, which hasan addedbenefitof
regularly changingthe secretwhich is sentback to the
remotesystem.Figure5 shows the internalstructureof
thecookie.

Thebasisof the implementationis a tableof 12832-
bit valuesobtainedfrom arc4random(). Eachentry is
usedfor a durationof 31.25milliseconds,andhasa to-
tal lifetime of 4 seconds,which waschosenasa reason-
ableupperboundfor the RTT to the remotesystem,as
SYN,ACK containingthecookiemustreachthesystem
andbereturnedbeforethesecretexpires.

In orderto generatea cookie,thesystemtick timer is
scaledinto units of 31.25millisecondsby useof divide
andshift operations,with the resultusedto choosethe
correctwindow index. If the secretin the currentwin-
dow hasexpired, a new 32-bit secretis obtainedfrom
arc4random(),andthetimeoutis reset.

The local address,foreignaddress,local port, foreign
portandsecretarepassedthroughMD5 to createtheini-
tial basisof the cryptographichash,with 25 bits being
usedin thecookie,and7 bits containingthewindow in-
dex. ThepeerMSSfrom theTCPoptionssectionof the

initial SYN is fit into oneof 4 predefinedMSS values,
and the resulting2 bit index is xor’ed into the mix, as
shown by �(� in Figure5. Finally, thepeer’s 32-bit ISS
is xor’ed in to generatethe final cookie, which is sent
backto theconnectingsystemastheISN.

Sinceno stateis kept on the server machine,any re-
turning ACK which containsthe correctTCP sequence
numbersmay serve to establisha connection. Validat-
ing theACK is thereverseof theaboveprocess.First the
peer’ssequencenumberis removed,andthenthe7 bit in-
dex is usedto selectthecorrectwindow. If thesecrethas
expired,thentheACK is immediatelydiscardedwithout
furtherprocessing.This insuresthatthesystemdoesnot
have to checkevery incomingACK unlessa syncookie
wasrecentlysent.If thetimeoutindicatesthatthesecret
is valid, it is usedin the MD5 hashcomputation. The
ACK is consideredvalid if the remaining23 bits evalu-
ateto 0.

In practice,thismeansthata remotesystemhas4 sec-
ondsto try andbruteforcea spaceof

��)�*
entries.

6.1 SYN cookieperformance

Thesyncachetestswereperformedonthetargetmachine
by enablingthefollowing sysctl

net.inet.tcp.syncookies

andthenperformingthetestsin theusualfashion.The
resultsof thetestarepresentedin Figure4.

Theresultsshow thatsyncookiesprovidesslightly bet-
ter performancethansyncachealone. This may be due
to the fact that the syncachecalls arc4random()for ev-
erySYN,ACK it sends,while thesyncookieroutinespri-
marily call MD5(). Investigationinto the reasonfor the
performancedisparityis ongoing,but theresultsarenot
availableat this time.

Therearealsoa few unusualresultshere:Theredoes
not appearto be a straightforward explanationfor the
jump in completedconnectionsat 700 microseconds.
This is not due to TCP retransmissions,as the first re-
transmissiontimeout is set at one second. A possible
explanationis that the systemis busy executingthe in-
terrupthandlerfor eitherof theGigabitadapters,andis
delayedin servicingthe100Mbadapter.

Also of interestto noteis thatwhile 100%of thesyn-
cacheconnectionshavecompletedin 1 second,thesame
isn’t true for syncookies.This shouldn’t happen,asno
packet loss on the 100Mb segmentwas observed, and
the systemdid not run out of mbufs. Upon further in-
vestigation,this turnedout to bea minor bug in theVM
systemwheretheinitial boot-timeallocationrequestwas
roundedimproperly, leadingto a shortageof syncache
structureentries.With thecurrentcode,at leastoneentry
is alwaysneededin orderto sendtheSYN,ACK reply.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

�

microseconds

Time needed to connect() to remote system

syncache & syncookies, idle box
syncache, SYN flood

syncache & syncookies, SYN flood

Figure4: Performancecomparisonof asystemwith syncacheandsyncookiesoveroneusingonly syncache.

6.2 Round trip performance

Prior measurementswere taken by timing how long it
takesfor a connect()call to completeon the client ma-
chine.Thiscorrespondsto thetimerequiredto complete
2 stagesof a TCP handshake, sincethe client machine
entersthe ESTABLISHED stateassoonasit receivesa
SYN,ACK. An unansweredquestionis how long it takes
the server to enterthe ESTABLISHED state,from the
time the initial SYN is sentfrom the client. This time
maybeaffectedby thedifferentprocessingrequirements
to verify theACK, andmayfail if theoriginal syncache
recordno longerexists.

To verify failurewasnot a concern,the experimental
setupwasmodifiedto includethetimerequiredto read()
a byte from theserver, which canbeviewedasa 4 way
handshake: transmitSYN, receive SYN,ACK, transmit
ACK, receivedata.Theresultsfor this testarepresented
in Figure6.

On an unloadedbox, there is no measurablediffer-
encein performancebetweenthesyncacheandsyncook-
ies approaches.However, when the box is loaded,the
combinationof syncacheandsyncookiesoutperformsa
puresyncacheconfiguration.Again,astherearenoTCP
retransmitsoccurring,theperformancedifferenceis not
due to entriesgetting droppedfrom the syncachehash
buckets. This alsoindicatesthat the bucket depthof 30
entriesthat is usedin thesetestsis sufficient to handle
the RTT acrossthe local LAN; connectionsaregetting
establishedbeforethey aredropped.

The differencebetweenthe two algorithmscould be
explainedby the differencein ISSgeneration,or by the
factthatthestandalonesyncacheneedsto performFIFO
drop for a bucket, which is bypassedwhensyncookies
arein use.However, it is not expectedthat thelist man-
agementrequirements,which consistof few TAILQ *
calls, would be significant. The investigationinto the
performancedifferenceis still ongoing.

In comparisonto the unmodifiedsystempresentedin
Figure2, thereis a dramaticimprovement. In this ex-
periment,clientswereableto connectto the server and
performusefulwork (readingonebyte),with all attempts
completingwithin 1 second.In the unmodifiedsystem,
90%of theconnectionsstill hadnot completedtheTCP
handshake after 1 second. Even with reducedqueue
depths,the performanceof the unmodifiedsystemdoes
not matchthenew code.

7 Previous Work

David Borman wrote a patch for BSDi which imple-
menteda SYN cachein October1996, which was re-
leasedasan official BSDi patch[2]. This implementa-
tion usedthecacheonly asa fallbackmechanismin case
the listen queueoverflowed, anddid not retransmitthe
SYN,ACK to the peer. The justificationgiven wasthat
sincethe hostwasunderattack,performingretransmits
wouldbeawasteof CPUtime [3].

This codewas incorporatedinto NetBSD[5] in May

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 o

f c
on

ne
ct

io
ns

 c
om

pl
et

ed

�

microseconds

Time needed to connect() and read() 1 byte from remote system

syncache, idle box
syncookies, idle box

syncache, SYN flood
syncookies, SYN flood

Figure6: Time requiredto connect()to remotesystemandread()onebyte in response.No errorsat thesystemcall
level wereobservedduringthetest.

1997andsubsequentlyenhancedto performretransmits,
as well as having the cachehandleall incoming con-
nections,insteadof only thosewhich overflow thelisten
queue.Theimplementationdescribedin thispaperbears
a strongresemblanceto their existingcode.

An alternateapproachwas taken by Linux, which
chose to incorporate syncookies[1] as their defense
againstthis style of attack. On thesesystems,the syn-
cookiedefensemechanismengagesonly whenthe nor-
mal listenqueueoverflows.

8 Further Work and Conclusion

Whensyncookiesareenabled,theexistingcodedoesnot
drop any entriesfrom the syncache,choosingto senda
syncookieresponseinstead. However, in practicethis
leadsto thesyncachebeingfull of bogusentriesfrom a
SYN flood, and forcesall legitimateconnectionsto be
handledby syncookies.Essentially, the systemendsup
behaving asif thereis nosyncache,which is notanideal
situation.

An alternateapproachthatmayprovefeasibleis to use
asyncookieastheISN for all connections,insteadusing
arc4random()in the syncachecase. This would permit
the replacementmechanismof entrieswithin the syn-
cacheto operateasnormal,asthereturningACK could
beacceptedby eitherby virtue of passingthesyncookie
check,or by matchingan existing syncacheentry. This

approachis currentlyunderinvestigation;oneissuethat
needsto beaddressedis whetherthereducedentropy of
a syncookieISN providesadequateprotectionfrom re-
moteattackersascomparedto onefrom arc4random().

In this paper, we have seenthat an unmodifiedma-
chineprovidesunacceptableresponsetimesunderasim-
ple 10Mb/sSYN flood attack.Two approachesto hand-
ing this load arepresentedandevaluated,andwe show
thatbothareableto extensively migitatetheeffectsof a
SYN flood andallow the systemto continueoperating.
This goal is reachedby the dual approachof reducing
memoryconsumptionandstateon the server side,and
theuseof betteralgorithmsto handlea largenumberof
incompletedconnections.With the new code,the same
hardware is now able to withstanda SYN flood attack
while maintaininganacceptablelevel of serviceto legit-
imateclients.

References

[1] BERNSTEIN, D. J. Syncookies.http://cr.yp.
to/syncookies.html.

[2] BORMAN, D. Bsdi implementation of syn
cache. ftp://ftp.bsdi.com/private/
44-syn-diffs.gz.

[3] BORMAN, D. tcpip-impl posting. http:
//www.kohala.com/start/borman.
97jun06.txt.

[4] Freebsd, tuning(7) man page. http://www.
FreeBSD.org/cgi/man.cgi?query=
tuning&apropos=0&sektion=7&man%
path=FreeBSD+4.4-RELEASE&format=
html.

[5] Netbsd.http://www.netbsd.org/.

[6] Rfc 1644.TransactionalTCP.

[7] STEVENS, W. R. Tcp/ip illustrated.

