
Digital Signatures for Flows and Multicasts
�

Chung Kei Wong Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188

June 14, 1999 (revised)

Abstract
We present chaining techniques for signing/verifying

multiple packets using a single signing/verification opera-
tion. We then present flow signing and verification proce-
dures based upon a tree chaining technique. Since a sin-
gle signing/verification operation is amortized over many
packets, these procedures improve signing and verification
rates by one to two orders of magnitude compared to the ap-
proach of signing/verifying packets individually. Our pro-
cedures do not depend upon reliable delivery of packets,
provide delay-bounded signing, and are thus suitable for
delay-sensitive flows and multicast applications. To further
improve our procedures, we propose several extensions to
the Feige-Fiat-Shamir digital signature scheme to substan-
tially speed up both the signing and verification operations,
as well as to allow “adjustable and incremental” verifica-
tion. The extended scheme, called eFFS, is compared to
four other digital signature schemes (RSA, DSA, ElGamal,
Rabin). We compare their signing and verification times, as
well as key and signature sizes. We observe that (i) eFFS
is the fastest in signing (by a large margin over any of the
other four schemes) and as fast as RSA in verification (tie
for a close second behind Rabin), (ii) eFFS allows a trade-
off between memory and signing/verification time, and (iii)
eFFS allows adjustable and incremental verification by re-
ceivers.

1. Introduction

Data confidentiality, authenticity, integrity, and non-
repudiation are basic concerns of securing data delivery
over an insecure network, such as the Internet. Confiden-
tiality means that only authorized receivers will get the data;
authenticity, an authorized receiver can verify the iden-
tity of the data’s source; integrity, an authorized receiver
can verify that received data have not been modified; non-
repudiation, an authorized receiver can prove to a third

�
Research sponsored in part by Texas Advanced Research Program

grant no. 003658-063 and by NSA INFOSEC University Research Pro-
gram grant no. MDA904-98-C-A901. An early version of this paper ap-
pears in Proceedings IEEE ICNP ’98, Austin, TX, October 1998.

party the identity of the data’s source.1

Most investigations on securing data delivery over
packet networks have focused on unicast delivery of data
sent as independent packets. Exceptions include recent pa-
pers on scalable secure multicasting [1, 13, 20] and a flow-
based approach to datagram security [14]. All of these pa-
pers are mainly concerned with data confidentiality.

In this paper, our concerns are data authenticity, integrity
and non-repudiation for delay-sensitive packet flows, partic-
ularly flows to be delivered to large groups of receivers. For
an individual message (packet), these concerns can be ad-
dressed by one of many available digital signature schemes
[6, 15, 17, 19]. However, these schemes are not efficient
enough for signing/verifying packets individually for delay-
sensitive flows, such as packet video.

In the Internet, multicast has been used successfully to
provide an efficient, best-effort delivery service to large
groups [2]. Consider a packet flow multicasted to a group
of receivers. A consequence of best-effort delivery is that
many receivers will not receive all of the packets in the
multicasted flow. Furthermore, many multicast applications
allow receivers to have widely varying capabilities (e.g.,
to receive layered video and audio transmissions) or needs
(e.g., to receive different stock quotes, news, etc.). Con-
sequently, receivers get different subsequences of packets
from the same multicasted flow.

1.1. Existing techniques for signing flows
Conceptually, a digital signature scheme is defined by

functions for key generation, signing, and verification. The
signer (sender) uses the key generation function to create
a pair of keys, a signing key,

���
, and a verification key,

���
.

The signer keeps the signing key private, and makes the ver-
ification key publicly known to all verifiers (receivers).2

To sign a message � using signing key
� �

, the signer
calls the signing function which returns the signature of
message � . The signer then sends the signed message, con-

1In the balance of this paper, we use “receiver” to mean “authorized
receiver” unless otherwise stated.

2The signing and verification keys are also referred to as private and
public keys, respectively.

1

sisting of message � and its signature, to verifiers. Having
received the signed message, a verifier calls the verification
function with key

� �
. If the verification function returns

true, then the verifier concludes that the signer did sign the
message and the message has not been altered. Moreover,
the signer cannot deny having signed the message (non-
repudiation).

In practice, a message digest function, such as MD5 [18],
is first applied to the message to generate a fixed-size mes-
sage digest which is independent of message size. Signing
a message means signing the digest of the message. (MD5
message digests are 128 bits long.)

A flow is a sequence of packets characterized by some
attribute [16, 21]. Packets in a flow may be obtained from
segmenting the bit stream of digitized video, digitized au-
dio, or a large file. They may also be related data items, such
as stock quotes, news, etc., generated by the same source.

It is easy and efficient to sign an all-or-nothing flow, that
is, a flow whose entire content is needed before any part of it
can be used, e.g., a long file. In this case, the signer simply
generates a message digest of the entire flow (file) and signs
the message digest.

Most applications, however, create flows that are not all-
or-nothing. That is, a receiver needs to verify individual
packets (or, more generally, application data units) and use
them before the entire flow is received. For these flows, a
straightforward solution is to sign each packet individually
and each packet is verified individually by receivers. This
solution is called the sign-each approach.

The sign-each approach is computationally expensive.
The signing rate and verification rate are at most

�������	�
������
� �������

and
������������������ ������� �"!

packets per second, respec-
tively, where

�#�
�$��
is the time to compute the message di-

gest of an
�
-byte packet,

� �%�����
is signing time, and

� ������� �"!
is verification time for the message digest of a packet. The
signing and verification rates,3 in packets per second, of two
widely used digital signature schemes, RSA [19]4 and DSA
[15], with 512-bit modulus and using 100% processor time
of a Pentium II 300 MHz machine are shown below.

packet size Signing rate Verification rate
(bytes) RSA DSA RSA DSA

512 78.8 176 2180 128
1024 78.7 175 1960 127
2048 78.0 172 1620 126

If a slower machine is used, or only a fraction of proces-
sor time is available for signing/verification (e.g., a receiver
machine has only 20% processor time for verification be-
cause the other 80% is needed for receiving and processing
packets), then the rates should be decreased proportionally.

3The signing and verification rates are rates for signing and verifying
128-bit MD5 message digests of packets.

4In this paper, we use & =3 in RSA to obtain its fastest verification time
without affecting its signing time.

The signing rate is not important for a non-real-time gen-
erated flow, i.e., a flow whose entire content is known in
advance (such as stored video). This is because packets in
the flow can be signed in advance. For a real-time gener-
ated flow, however, the signing rate must be higher than the
packet generation rate of the flow. Furthermore, for delay-
sensitive flows, real-time generated or not, the verification
rate is important. From the above table, we see that the
signing and verification rates of the sign-each approach, us-
ing either RSA or DSA, are probably inadequate for many
applications.

Two techniques were previously proposed for signing
digital streams [7] which, at first glance, may be used for
signing packet flows. To describe the technique in [7] for
signing a non-real-time generated flow, consider a sequence
of � packets. The sender first computes message digest')(

of packet � (the last packet) and concatenates packet
�+* �

and
')(

to form augmented packet �,* �
. Then,

for -/. �1032 2 240 �5*76 , the sender computes message di-
gest

')(98 �
of augmented packet �+*:- , and concatenates

packet �;*<-=* �
and

'>(98 �
to form augmented packet

�,*:-?* �
. Message digest

'A@
of augmented packet 1 is

computed and signed. In this manner, only one expensive
signing/verification operation is needed for the sequence of
� packets. However, a necessary condition for using the
above technique is the following get-all-before requirement:
To verify packet - in the sequence, a receiver must have re-
ceived every packet from the beginning of the sequence.

For a real-time generated flow, a similar technique is
suggested in [7] with the same get-all-before requirement.
For a sequence of � packets, only one expensive sign-
ing/verification operation is needed, plus one inexpensive
one-time signature signing/verification for each packet in
the sequence. However, since one-time signatures and keys
are very large, this technique has a large communication
overhead (around 1000 bytes per packet) [9, 10].

The get-all-before requirement of both techniques in [7]
is too strong for practical Internet applications. Reliable
packet delivery is not used by many applications for flows
and multicasts. For example, reliable delivery is generally
not used for video and audio flows due to the extra delays
associated with retransmissions; either losses are tolerated
or forward error correction techniques are used instead.

For large-scale multicast applications, reliable delivery
of multicast packets is a difficult problem [5]. Moreover,
even if reliable multicasting is available, receivers with dif-
ferent needs/capabilities may choose to get different sub-
sequences of packets in a multicasted flow. In short, the
get-all-before requirement is not satisfied.

1.2. Characteristics and requirements
We have observed various characteristics in the delivery

of flows and multicasts by an unreliable packet network,
such as the Internet. They are summarized below:

2

� Each packet in a flow may be used as soon as it is re-
ceived.

� A receiver may get only a subsequence of the packets
in a flow. Different receivers may get different subse-
quences.

� Delay sensitive flows require fast processing at re-
ceivers. Real-time generated flows require fast pro-
cessing at senders as well.

� For a multicasted flow, many receivers are limited in
resources (processing capacity, memory, communica-
tion bandwidth, etc.) compared to the sender, which
is typically a dedicated server machine. In some envi-
ronments, both senders and receivers may be limited in
resources, e.g., mobile computers using wireless com-
munications.

� Receivers may have widely different capabili-
ties/resources. For example, receivers may be
personal digital assistants, notebook computers, or
desktop machines. Moreover, the resources available
to a receiver for verifying signatures may vary over
time.

Given the above characteristics, we design procedures
for signing and verifying flows in Section 2 as well as a
digital signature scheme in Section 3 to meet the following
requirements:
� The signing procedure is efficient and, for real-time

generated flows, delay bounded.
� The verification procedure is efficient (since many re-

ceivers have limited resources).
� Packets in a flow are individually verifiable.
� Packet signatures are small (i.e., small communication

overhead).
� Adjustable and incremental verification: The verifica-

tion operation is adjustable to the amount of resources
a receiver has. It allows a receiver/verifier to verify a
message at a lower security level using less resources,
and later increase the security level by using more re-
sources (e.g., if the message is important).

1.3. Contributions of this paper
In Section 2, we first describe and compare two chain-

ing techniques (star and tree) for signing/verifying multiple
packets using a single signing/verification operation (with-
out the get-all-before requirement in [7]). We then present
flow signing and verification procedures based upon the tree
chaining technique. Since a single signing/verification op-
eration is amortized over many packets, these procedures
improve signing and verification rates by one to two or-
ders of magnitude compared to the sign-each approach.
The signing procedure also provides delay-bounded sign-
ing. Thus the procedures can be used for delay-sensitive
flows.

Since signed packets in our procedures are individually
verifiable, the procedures can be used to reduce the work-
load of any machine that sends out a large number of
signed packets to one or more destinations. There is no
requirement that these packets belong to flows. However,
for packets that belong to a flow, the workload of the flow’s
receiver(s) is also reduced.

In Section 3, we turn our attention to improving the sign-
ing and verification operations in the procedures. Specif-
ically, we present several extensions to the Feige-Fiat-
Shamir digital signature scheme to speed up both signing
and verification as well as to allow adjustable and incre-
mental verification. In Section 4, the extended Feige-Fiat-
Shamir (eFFS) scheme is compared to four well-known sig-
nature schemes [6, 15, 17, 19]. We compare their signing
and verification times, as well as key and signature sizes.
We observe that (i) eFFS is the fastest in signing (by a
large margin over any of the other four schemes) and as
fast as RSA in verification (tie for a close second behind
Rabin), (ii) eFFS allows a tradeoff between memory and
signing/verification time, and (iii) eFFS allows adjustable
and incremental verification by receivers.

2. How to Sign a Flow
To digitally sign/verify delay-sensitive flows, the sign-

each approach is computationally too expensive for many
applications, particularly those applications that generate
packet flows in real time.

As an alternative to the sign-each approach, we present
two chaining techniques (star and tree) for providing au-
thenticity to a group of packets, called a block, using a sin-
gle signing operation. The basic idea is to compute a block
digest which is signed. In order to make packets individu-
ally verifiable, each packet needs to carry its own authen-
tication information consisting of the signed block digest
(block signature) together with some chaining information
as proof that the packet is in the block.
2.1. Star chaining

Consider � packets that constitute a block. In star chain-
ing, the block digest is simply the message digest of the
� packet digests (listed sequentially). Let

� ���
denote the

message digest function being used (e.g., MD5). Consider,
for example, a block of eight packets with packet digests'A@ 032 232 0 '��

. The block digest is
' @�8�� . � � '>@ 032 23230 '��

,
and the block signature, � -	��
 � ' @ 8��

, is the block digest
signed with some digital signature scheme (such as RSA,
DSA or eFFS).

The relationship between the packet digests and the
block digest can be represented by a one-level rooted tree,
called an authentication star. Figure 1 illustrates an authen-
tication star for eight packets, with packet digests at leaf
nodes, and the block digest at the root.

For packets to be individually verifiable, each packet
needs its own authentication information. Such authenti-

3

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

	�	
	�	
	�	

�

�

�

���
���
���
���
���
���

�
�
�
���
���
���

D1-8

D1 D2 D3 D4 D5 D6 D7 D8

Figure 1. Star chaining technique.
cation information, called packet signature, consists of the
block signature, the packet position in the block, and the
digests of all other packets in the block. (We use the term
chaining overhead to refer to all information in a packet
signature except the block signature.)

Suppose the third packet in the above example is re-
ceived. Its authenticity can be individually verified as
follows. The verifier computes the digest

'��
� of the

packet received, and then the block digest
'��@ 8�� .� � '>@ 0 '�� 0 '��

�
0 '�� 0 232 230 '��

, where
' @ 0 '�� 0 '�� 0 2323230 '��

are carried in the packet signature. The verifier then calls
the verification operation to verify

'��@�8��
, i.e., to determine

whether
'��@�8��

is equal to block digest
'A@�8��

in block signa-
ture � - ��
 � 'A@�8��

. The packet is verified if the verification
operation returns true, i.e.,

'��@�8�� . ' @�8��
.

Suppose the third packet is the first in the block to ar-
rive and its authenticity has been verified. Afterwards, the
verifier knows every node in the authentication star, i.e.,
all nodes in the authentication star are verified and can be
cached. With caching, when another packet in the block ar-
rives later, say the sixth packet, the verifier only needs to
compute the digest

' �
� of the packet received and compare

it to the verified node
' � in the authentication star. If they

are equal, the packet is verified.
2.2. Tree chaining

Tree chaining subsumes star chaining as a special case.
With tree chaining, the block digest is computed as the root
node of an authentication tree.5 Consider, for example, a
block of eight packets with packet digests

' @ 0 2323230 '��
. The

packet digests are the leaf nodes of a degree two (binary)
authentication tree, with other nodes of the tree computed
as message digests of their children, as shown in Figure 2.
For example, the parent of the leaves

' @
and

'��
is

'A@�� .� � '>@ 0 '��
where

� ���
is the message digest function being

used. The root is the block digest, with the block signature
being the signed block digest.

For a packet to be individually verifiable, each packet
needs to carry its own authentication information (packet
signature). In tree chaining, a packet signature consists of
the block signature, the packet position in the block, and the
siblings of each node in the packet’s path to the root. (Again
we use the term chaining overhead to denote all information
in a packet signature except the block signature.)

5Tree chaining was first presented in [11]. Any rooted tree can be used
as an authentication tree with packet digests at leaf nodes and the block
digest at the root. In particular, there is no need to use a balanced tree.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
 �
 �
 �

D1 D2 D3 D4 D5 D6 D7 D8

D1-8

D5-8D1-4

D1-2 D3-4 D5-6 D7-8

Figure 2. Tree chaining technique.

To verify a packet individually, a verifier needs to verify
its path to the root. Consider, for example, the dashed path
in Figure 2 for the third packet. Each node in the path needs
to be verified. A verifier computes the digest

'��
� of the

received packet, and then each of its ancestors in the tree.
That is,

'��
� 8!� . � � '��

�
0 '��

,
'��@�8"� . � � 'A@ 8#� 0 '��

� 8"� , and' �@ 8�� . � � ' �@�8"� 0 '�$ 8��
, where

'�� 0 'A@�8!�
and

'�$38��
are

carried in the packet signature. The verifier then calls the
verification operation to determine whether

'��@�8��
is equal

to block digest
' @�8��

in block signature � -	��
 � ' @�8��
. The

packet is verified if the verification operation returns true,
i.e.,

'��@�8�� . ' @�8��
.

Suppose the third packet is the first in the block to arrive.
After verifying it, the verifier knows the following nodes6 in
the authentication tree:

' � 0 ' � 0 ' @ 8#� 0 ' � 8"� , ' @ 8!� 0 ' $38��
and the block digest

' @�8��
. These are verified nodes which

can be cached. By caching verified nodes, the verifier only
needs to compute each node in the authentication tree at
most once.

For example, after verifying the third packet, to verify
the sixth packet which arrives later, the verifier computes
the digest of the packet received,

'��
� , its parent

'��$38 � .� � ' $ 0 '��� , and its grandparent
'��$38�� . � � '��$38 � 0 '�% 8�� .

If
'��$38��

is equal to the cached node
' $38��

, the sixth packet
is verified.

2.3. Comparison of chaining techniques

We performed experiments on a Pentium II 300 MHz
machine running Linux, and compared star and tree chain-
ing. We used MD5 as the message digest function [18]
for generating 128-bit message digests. Figure 3 shows the
MD5 computation time versus input size. We observe that
the MD5 computation time can be regarded as a linear func-
tion in input size (for a large input, i.e., 1024 bytes or more).

For each chaining technique, an authentication tree is
first built for a block of packets,7 i.e., each node is computed
as the message digest of its children. The time to build an

6Some are carried in the packet signature and the others have been com-
puted.

7We will use “tree” instead of “tree/star” since star chaining is a special
case of tree chaining.

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

tim
e

(m
s)

input size (bytes)

MD5

Figure 3. MD5 computation time (ms).

authentication tree (excluding time to compute packet di-
gests for leaf nodes) is called the tree build time. The block
signature is then obtained by signing the block digest at the
root. After that, the packet signature of each packet is built
from the authentication tree and the block signature. The
time to build a packet signature is called packet signature
build time. The chaining time for a block at a signer is the
sum of tree build time and packet signature build time for
all packets in the block.8 Figure 4(a) shows the chaining
time for a block of packets at a signer.

Consider the total signing time for all packets in a block
which is the block’s chaining time plus the signing time of
the block digest. The block digest signing time is 12.7 ms
using 512-bit RSA and 5.6 ms using 512-bit DSA. For a
block of 16 packets, from Figure 4(a), the chaining time
is 0.21 ms for a degree two authentication tree. The total
signing time is

��2 6 � � � 6 2�� . � 6 2��
ms using 512-bit RSA.

Thus the average signing time for one packet is
� 6 2�������� .��2����

ms, which is less than 1/15 of the block digest signing
time using 512-bit RSA.

To verify packets in a block, an authentication tree is
built from packet signatures as packets arrive. The chain-
ing time for a block at a verifier is the sum of tree build
time and time to verify chaining information in the packet
signature of every packet in the block.9 Figure 4(b) shows
the chaining time for a block of packets at a verifier with
caching of verified nodes.

Consider the total verification time for all packets in a
block which is the block’s chaining time plus the verifica-
tion time of the block signature. The signature verification
time is 0.40 ms using 512-bit RSA and 7.6 ms using 512-
bit DSA. For a block of 16 packets, from Figure 4(b), the
chaining time is 0.24 ms for a degree two authentication
tree. The total verification time is

��2 6	� �
��2 � � . ��2�� � ms
using 512-bit RSA. Thus the average verification time for
one packet is

��2 � � ����� . ��2 � � ms, which is 1/10 of the sig-
nature verification time using 512-bit RSA.

From Figure 4(a), note that for any block size smaller
than or equal to 64 packets, star chaining takes less time

8Note that chaining time does not include time to compute packet di-
gests for leaf nodes and time to sign the block digest.

9Note that chaining time does not include time to compute packet di-
gests for leaf nodes and time to verify the block signature.

0.01

0.1

1

2 4 8 16 32 64 128

ch
ai

ni
ng

 ti
m

e
(m

s)

block size

degree 2
degree 4
degree 8

star

(a) at a signer

0.01

0.1

1

2 4 8 16 32 64 128

ch
ai

ni
ng

 ti
m

e
(m

s)

block size

degree 2
degree 4
degree 8

star

(b) at a verifier

Figure 4. Chaining time (ms) for a block at a signer
and at a verifier (with caching of verified nodes).

0

200

400

600

800

1000

2 4 8 16 32 64 128

ov
er

he
ad

 s
iz

e
(b

yt
es

)

block size

degree 2
degree 4
degree 8

star

Figure 5. Average chaining overhead size (bytes) per
packet.

at a signer than tree chaining (degrees two to eight). How-
ever, for a larger block size, star chaining takes more time
at a signer than tree chaining, because the chaining time
for a star is � � �

�
and the chaining time for a tree is

� � ������ � �
where � denotes block size.

As shown in Figure 4(b), star chaining takes less time at
a verifier than tree chaining for all block sizes.

5

For each chaining technique, a packet signature has two
parts, the block signature and the chaining overhead. In
general, if a tree is not balanced and full, the chaining over-
head sizes of different packets are different. Figure 5 shows
the average chaining overhead size per packet. The size of
the block signature is not included in Figure 5 since it de-
pends on which signature scheme is used (e.g., the block
signature is 64 bytes for 512-bit RSA, and 40 bytes for 512-
bit DSA).

From Figure 5, note that the chaining overhead of star
chaining is much greater than tree chaining for block sizes
larger than eight. If a small communication overhead is im-
portant, packet signature sizes should be reduced. We rec-
ommend the use of degree two tree chaining which requires
the smallest chaining overhead. (From Figure 4, a degree
two tree has a slightly higher chaining time than the alter-
natives, but the difference is insignificant because chaining
time is much smaller than signing/verification time of the
block digest. See Figures 7 and 8 in Section 2.4.)

2.4. Flow signing and verification procedures
A flow is signed by partitioning it into blocks of packets,

with each block signed using tree chaining. For a non-real-
time generated flow, blocks are of the same size � , chosen
to be a power of the authentication tree degree � . For a
real-time generated flow, the packet generation rate is time-
varying for many applications, such as compressed video
and voice-activated audio. For these applications, partition-
ing the flow into fixed size blocks may lead to an unpre-
dictable (perhaps unbounded) signing delay. Instead, the
flow is partitioned by fixed time periods, and packets gen-
erated in the same time period are grouped into a block (see
Figure 6).

period Tperiod T

time

m packetsm packets

s 2s 1 sign signchain (m) + T chain (m) + T

1 2

Figure 6. Signing a real-time generated flow.
For both real-time and non-real-time generated flows, the

flow verification procedure is the same. For the first re-
ceived packet in a block, i.e., the block signature carried
in the packet signature is new to a verifier, the verifier com-
putes the packet digest, and every ancestor of the packet
digest.10 For the computed block digest (the root of authen-
tication tree), the verifier calls the verification operation to
verify that it is equal to the block digest in the block sig-
nature. If so verified, then all computed nodes and their
children are verified and cached.

For a packet that is not the first received packet in a
block, the verifier computes the packet digest. If the packet

10An ancestor node is computed as the message digest of its children
which are either computed or carried in the packet signature.

digest has been cached and the cached value is equal to the
computed packet digest, then the packet is verified. Oth-
erwise, the verifier computes every non-cached ancestor of
the packet digest. For the highest non-cached node com-
puted, the verifier then computes its parent. If the computed
parent and its cached value are equal, the packet is verified
and all computed nodes and their children are verified and
cached.

We implemented the flow signing and verification proce-
dures (see Appendix) and performed experiments on a Pen-
tium II 300 MHz machine running Linux. We used MD5
as the message digest function, and experimented with both
512-bit RSA and 512-bit DSA as the signature scheme for
block signatures.

Figure 7 and Figure 8 show, respectively, the flow sign-
ing and verification rates for 1024-byte packets.11 Note that
tree and star chaining are one to two orders of magnitude
more efficient than the sign-each approach. The flow sign-
ing and verification rates increase with block size. How-
ever, the rates vary only slightly with the chaining technique
used and with the tree degree in tree chaining. Since degree
two tree chaining has the lowest chaining overhead (packet
signature size), we recommend the use of degree two tree
chaining.

Figure 9 and Figure 10 show, respectively, the flow sign-
ing and verification rates for packets of size 512, 1024, or
2048 bytes. We used degree two tree chaining. From the fig-
ures, observe that the flow signing and verification rates de-
crease as the packet size increases. It is because more time
is needed to compute the message digest of a larger packet.
The decrease is more pronounced when the block size used
is large, since more time is used to compute packet digests
for a large block than a small block. Observe also that the
flow signing and verification rates increase with block size
and the increase is greater for a smaller packet size.
2.5. Bounded delay signing

Consider Figure 6. Assume that, in period
�

, at most
� packets are generated and their packet digests computed.
The time for signing a block of � packets is � ��� -
 � � � �
� �%�����

where � ��� -
 � � �
is the chaining time for a block of

� packets at a signer, and
� �%�4� �

is the block digest signing
time. Therefore, the delay of any packet within the block is
at most

' � . � � � ��� -
 � � � #� � �%�����
.

Table 1 shows the delay upper bound
' �

for period
� .� �

ms. Note that the upper bound is fairly insensitive to
block size since the block’s chaining time is much smaller
than the block digest signing time.

For a given application with a specified upper bound,
' �

,
for signing a real-time generated flow at a known packet
rate, we can work backwards and derive an appropriate
value for the parameter

�
needed for the signing procedure

of a real-time generated flow. Observe, from Figure 6, that

11Verification rates were computed assuming no packet loss.

6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 8 16 32 64 128

si
gn

in
g

ra
te

 (
pa

ck
et

s/
se

c)

block size

star
degree 8
degree 4
degree 2

sign-each

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 8 16 32 64 128

si
gn

in
g

ra
te

 (
pa

ck
et

s/
se

c)

block size

star
degree 8
degree 4
degree 2

sign-each

(a) using 512-bit RSA (b) using 512-bit DSA
Figure 7. Flow signing rate (packets/sec) for 1024-byte packets.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 32 64 128

ve
rif

ic
at

io
n

ra
te

 (
pa

ck
et

s/
se

c)

block size

star
degree 8
degree 4
degree 2

sign-each

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 32 64 128

ve
rif

ic
at

io
n

ra
te

 (
pa

ck
et

s/
se

c)

block size

star
degree 8
degree 4
degree 2

sign-each

(a) using 512-bit RSA (b) using 512-bit DSA
Figure 8. Flow verification rate (packets/sec) for 1024-byte packets.

number of packets generated in period �
2 4 8 16 32 64 128

tree deg 2 62.9 62.9 62.9 63.1 63.3 63.8 64.9
tree deg 4 62.8 62.9 62.9 63.0 63.2 63.5 64.2
tree deg 8 62.8 62.9 62.9 63.0 63.2 63.5 64.2

Table 1. Signing delay bound (ms) for period T =
50 ms using 512-bit RSA.

�
must be larger than

� �%�4��� � � ��� -
 � � �
, and

' �
must be

larger than 6 ��� ������� � � ��� -
 � � �
.

2.6. Selecting a digital signature scheme
For non-real-time generated flows, signing efficiency is

not critical. Thus a signature scheme with an efficient ver-
ification operation, such as RSA, can be used in the flow
signing and verification procedures. For real-time gener-
ated flows, however, it is critical that both signing and ver-
ification are highly efficient. Furthermore, in choosing a
digital signature scheme, we must also consider machine
capabilities (sender and receiver), as well as the fraction of
processor time available for signing and verification.

Using 100% processor time of a Pentium II 300 MHz

machine, the flow signing and verification rates for 1024-
byte packets, degree two tree chaining, and block size six-
teen are shown below.

signing rate verification rate
512-bit RSA 1090 packets/sec 7030 packets/sec
512-bit DSA 2140 packets/sec 1660 packets/sec

Note that using DSA, the flow verification rate is smaller
than the flow signing rate. This is undesirable because
receivers/verifiers are generally less powerful than the
signer/sender, e.g., the receivers may be personal digital as-
sistants or low-end notebook computers. Using RSA, the
flow signing rate may not be high enough for some applica-
tions. Although we can increase the flow signing and verifi-
cation rates by using a longer period or a larger block size,
neither option is desirable. A larger block size increases the
chaining overhead (packet signature size). A longer period
increases the delay for signing real-time generated flows.

To obtain a signature scheme better than RSA and DSA
for signing/verifying flows, we propose several extensions
to the Feige-Fiat-Shamir (FFS) signature scheme. The ex-

7

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 32 64 128

si
gn

in
g

ra
te

 (
pa

ck
et

s/
se

c)

block size

512-byte packets
1024-byte packets
2048-byte packets

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 32 64 128

si
gn

in
g

ra
te

 (
pa

ck
et

s/
se

c)

block size

512-byte packets
1024-byte packets
2048-byte packets

(a) using 512-bit RSA (b) using 512-bit DSA
Figure 9. Flow signing rate (packets/sec) for degree two tree chaining.

0

2000

4000

6000

8000

10000

12000

2 4 8 16 32 64 128

ve
rif

ic
at

io
n

ra
te

 (
pa

ck
et

s/
se

c)

block size

512-byte packets
1024-byte packets
2048-byte packets

0

2000

4000

6000

8000

10000

12000

2 4 8 16 32 64 128

ve
rif

ic
at

io
n

ra
te

 (
pa

ck
et

s/
se

c)

block size

512-byte packets
1024-byte packets
2048-byte packets

(a) using 512-bit RSA (b) using 512-bit DSA
Figure 10. Flow verification rate (packets/sec) for degree two tree chaining.

tended scheme, called eFFS, is presented in the next sec-
tion. The eFFS scheme has a very efficient signing oper-
ation (much more efficient than those of RSA and DSA)
and a verification operation as efficient as that of RSA. A
performance comparison of eFFS with five other signature
schemes (including FFS, RSA and DSA) is given in Sec-
tion 4.

3. The eFFS Signature Scheme
In Section 3.1, we first describe the basic Feige-Fiat-

Shamir (FFS) signature scheme [3, 4]. The eFFS signature
scheme is derived from FFS with two kinds of extensions.
Three extensions to speed up the signing and verification
operations of FFS are presented in Section 3.2. An exten-
sion to provide adjustable and incremental signature verifi-
cation is presented in Section 3.3.
3.1. Feige-Fiat-Shamir signature scheme

In the basic FFS signature scheme with parameter
� � 0��

[3, 4], each signer chooses two large primes � and � , and
computes modulus
 .���� . Then, the signer chooses�

integers � @ 0 2323230 ��� (or
�

integers � @ 03232 230 �	�), and com-
putes � @ 032 232 0 �
� (or � @ 0 23232 0 ���) by �

�� .��
8#@�

mod
 . The

signing key is � � @ 032 232 0 � � 0
� and the verification key is
�
� @ 03232 2 0 � � 0
� .

To sign message � , the signer does the following steps:
(1) choose

�
random integers, � @ 032 23230 ��� , between 1 and
 ,

and compute � � .��
��

mod
 for - . �1032 232 0��
; (2) calculate

the message digest
� � � 0 � @ 032 232 0 � � where the message di-

gest function
� � ��

is public knowledge and the message di-
gest is at least

��� �
bits long; let ��� ��� be the first

��� �
bits

of the message digest where - . � 03232 2 0��
, and � . �10 232 2 0 �

;
(3) compute � � .�� � � � �	���! @ � 2 232 � � � �#"�

mod
 for
- . �10 2323230��

. The signature of message � consists of �$� �
for - . � 032 232 0��

and �%� �&� for - . �1032 232 0��
and � . �1032 232 0 �

.

To verify the signature of message � , a verifier com-
putes ' � .(�

�� � � � ���# @ � 23232 � � � �)"�
mod
 for - . �10 2323230��

.
The signature is valid if and only if the first

�*� �
bits of� � � 0 ' @ 032 232 0 '	� are equal to the ��� �&� received. (It can be

shown that ' � computed by the verifier is equal to � �
at the

signer.)

The security level of FFS
� � 0��

depends on the follow-
ing: (1) the size of modulus
 (i.e., the size of the primes
� and �), and (2) the value of product

� �
. A system with a

8

larger modulus is more secure, and a system with a larger� �
product is more secure. If two systems have the same

modulus and same
� �

product (but different
�

and
�

values),
then their security levels are about the same.

� . � � . 6 � . �
key sig key sig key sig� � . � � 4160 72 2112 136 1088 264� � . � 6 � 8256 80 4160 144 2112 272

Table 2. FFS signing/verification key and signature
sizes (bytes) with 512-bit modulus.

Assuming � � � � .��
�� and � � � � .��
�� , where � ��� denotes
the size of � in bits, the signing/verification key size is� � � �� � �
�� bits, and the signature size is

� � �
�� � � � �
bits.

The signing/verification key size only depends on
�

, but the
signature size is proportional to

�
. Thus, for a fixed

� �
prod-

uct, we can reduce the signature size by using a smaller
�

(and a larger
�

). For
� . �

, the signature size is minimized,
but the signing/verification key size is maximized. Table 2
shows the signing/verification key size and signature size of
FFS with 512-bit modulus.

3.2. Extensions to speed up FFS

Small verification key (small v-key)
In FFS, the sizes of signing key components � � � affect
the signing time, and the sizes of verification key compo-
nents �$� � affect the verification time. An improvement
suggested in [12] is to use the first

�
prime numbers as ver-

ification key components �$� � . However, since not every
prime number � satisfies the condition that there exists an
integer � such that �

�

. �
8�@

mod
 , we propose to use the
first

�
prime numbers that satisfy this condition as verifi-

cation key components.12 This extension reduces both the
verification time and the verification key size.

Chinese remainder theorem (crt)
The signing operation in FFS involves the computing of
� � . � � � � � � �! @ � 2 232 � � ���)"�

mod
 . For
 .���� ,
from the Chinese Remainder Theorem, a signer can com-
pute � �

from
� �

and � � using the following formula: � � .� � � � * � � � � � �
8#@
� � � � mod
 where �

8#@
� . �

8#@
mod � ,��� . � � � � � ���# @ � 2 232 � �
� �)"�

mod � and � � . � � � � � ���# @ �
23232 � �
� �)"�

mod � . Thus, instead of computing � �
directly

with multiplication operations in mod
 , a signer first com-
putes

� �
and � � with multiplication operations in, respec-

tively, mod � and mod � . Then � �
is computed from

� �
and

� � . Since multiplication operations in mod � and mod � are
more efficient than in mod
 , the signing time is decreased.

This Chinese Remainder Theorem improvement can
only be used by a signer because knowledge of the factors

12In practice, for � up to 128, the verification key components �	��
� are
less than ����� , and each component can be stored in 16 bits.

of modulus
 is required. A few hundred bytes of addi-
tional memory are needed for storing a few large integers
(for 512-bit modulus).

Precomputation (precomp)
A signer can further speed up the signing operation by us-
ing more memory. To illustrate the basic idea of this im-
provement, consider the signing operation with

� . � .
To sign a message, a signer computes � � . � � � � �
���# @ �
232 2 � �
������

mod
 , for - . � 03232 2 0��
. Since � @ 03232 230 � � do

not change from message to message, and � � @ 03232 230 � � � are
either one or zero, the signer can precompute and store the
product (mod
) of every non-empty subset of � � @ 032 232 0 � � .
Let � � ������ � � denote the precomputed product � � @ � 232 2 �
� ���� mod
 . Then, to sign a message, the signer simply com-
putes � � by � � � � � �# ������ � ��� mod
 .

For large
�

, it is not practical to precompute the product
(mod
) of every non-empty subset of � � @ 03232 230 � � . In-
stead, the signer partitions � � @ 03232 230 � � into smaller sets
and precomputes each of them. If each smaller set contains
four � � , then it is a 4-bit precomputation. Similarly, if each
smaller set contains eight � � , then it is an 8-bit precompu-
tation. For 4-bit precomputation with

� . � 6 � and 512-bit
modulus, a signer needs to store

� 6 � � � � � 6
�

* �� . � � �

products. That is, additional memory of � � � � ��� 6 bits or 31
kilobytes is required. The additional memory required by
8-bit, 12-bit, and 16-bit precomputation are 261 kilobytes,
2.88 megabytes, and 33.6 megabytes, respectively.

Although a similar precomputation can be used in ver-
ification, it is not effective with the small v-key exten-
sion. This is because when small primes are used as public
key components, their products can be computed very effi-
ciently.

Performance comparison
We implemented the three speedup extensions using the
large integer arithmetic routines from CryptoLib [8]. Ta-
ble 3 and Table 4 show the times for signing and verify-
ing (with 512-bit modulus) 128-bit message digests using
different speedup extensions for different values of

� � 0��
.13

The results were obtained on a Pentium II 300 MHz ma-
chine running Linux. Note that, for a fixed

� �
product, the

signing/verification time is smaller when
�

is smaller.
In the experiments to be reported in the balance of this

paper, we used 8-bit precomp + crt + small v-key for eFFS
signing, and small v-key only for eFFS verification.
3.3. Adjustable and incremental verification

In multicast or group communications, receivers typi-
cally have different amounts of resources, and the resources
available to a receiver for verification vary over time. It is
thus desirable to have an adjustable and incremental signa-
ture verification operation. With this extension, a signature

13For basic FFS, we specified signing key components ����
�� . Verifica-
tion key components �	��
� were chosen by CryptoLib.

9

eFFS parameter
� � 0��

��� 6 0 �� ��� 6 0 6 � � � 0 �� ��� 6 0 � � � � 0 6 ��� 6 ��0 ��
basic FFS 3.95 7.87 7.21 15.62 14.35 13.72

small v-key 3.95 7.84 7.21 15.63 14.36 13.72
crt + small v-key 3.13 6.20 5.35 12.44 10.63 9.78

4-bit precomp + crt + small v-key 1.95 3.84 2.99 7.61 5.92 5.08
8-bit precomp + crt + small v-key 1.47 2.87 2.02 5.67 3.98 3.14

Table 3. eFFS signing time (ms) with 512-bit modulus.

eFFS parameter
� � 0��

��� 6 0 �� ��� 6 0 6 � � � 0"�� ��� 6 0 � � � � 0 6 � � 6 ��0 ��
basic FFS 3.65 7.07 7.12 14.01 13.63 13.44

small v-key 0.33 0.62 0.43 1.21 0.81 0.65
4-bit precomp + small v-key 0.32 0.60 0.41 1.16 0.76 0.59
8-bit precomp + small v-key 0.32 0.59 0.40 1.14 0.74 0.57

Table 4. eFFS verification time (ms) with 512-bit modulus.

� �
product� � . � 6 � � . � � � � . � 6 �

1-level signature 1.47 2.02 3.14
2-level signature 2.87 3.98
4-level signature 5.67

Table 5. eFFS
�
-level signature signing times (ms).

can be verified at different security levels. An adjustable
verification allows a receiver to verify a message at a lower
security level using less resources. An incremental verifica-
tion allows a receiver to verify a message at a lower security
level first, and later increase the security level by using more
resources (e.g., if the message is important).

Since the security level of a signature scheme depends
on its parameters, e.g., the modulus size, an obvious ap-
proach to provide adjustable and incremental verification is
to use multiple keys (with different modulus sizes) to gen-
erate multiple signatures for different security levels. To
verify at a lower security level, the verification key with a
shorter modulus size is used to verify the corresponding sig-
nature. This approach is simple but very inefficient. In the
following, we design an extension to FFS that provides ad-
justable and incremental verification efficiently.

Our extension to provide adjustable and incremental ver-
ification is to use

�
greater than one, and to include �$� � for

->. 6 0 232 2 0��
in signatures. This is called a

�
-level signa-

ture.14 This extension is as secure as the original scheme
because � � . �

�� � � � � �# @ � 2 232 � � ���#"�
mod
 for - . 6 032 232 0��

can be computed easily from the original signature, which
consists of ��� ��� and �
� � , together with the verification key
�
� @ 0 232 2 0 ��� 0
� which is publicly known.

To verify a
�
-level signature of message � at security

level
�

of
�

(where
��� �

), a verifier does the following:
(1) compute ' � . �

�� � � � � �! @ � 232 2 � � � �#"�
mod
 for -9.

14Note that the original (1-level) signature does not provide adjustable
and incremental verification.

To level 1 level 2
From level 0 0.42 0.81
From level 1 0.40

(a) 2-level signature

To level 1 level 2 level 3 level 4
From level 0 0.34 0.63 0.93 1.22
From level 1 0.30 0.60 0.89
From level 2 0.30 0.60
From level 3 0.31

(b) 4-level signature

Table 6. eFFS incremental verification times (ms) for� �
= 128.�10 2323230��

, and (2) verify that ' � 0 232 230 '�� are equal to � � 032 232 0 ���
respectively, and the first

� � �
bits of

� � � 0 ' @ 0 � � 032 23230 � �
are equal to the �%� ��� received.

To increase the verification security level from
� @

to
� �

, a
verifier does the following: (1) compute ' � . �

�� � � � � �# @ �
232 2 � � � �#"�

mod
 for - . � @ � �10 2323230�� �
, and (2) verify that

'�� 	�
@ 032 23230 '���
 are equal to ��� �

@ 03232 2 0 ����
 respectively.
The size of a

�
-level signature is

� � � � 6 � * �� � �
��
bits. For 512-bit modulus and product

� � . � 6 � , a 1-level
signature is 80 bytes and a 2-level signature is 208 bytes.

Table 5 shows different
�
-level signature signing times.

For the same
� �

product, the signing time increases as
the

�
value increases. However, the signing time is still

smaller than using multiple keys to implement different
security levels. For example, the 2-level signature sign-
ing time, which is 3.98 ms for

� � . � 6 � , is smaller than
the time to sign two (original 1-level) signatures, one for� � 0�� . � � � 0 ��

and the other for
� � 0�� . � � 6 ��0 ��

, which
is 6 2�� 6 ����2 � � . ��2 � �

ms.
Table 6 shows the (incremental) verification times from

one level to a higher level for a 2-level signature and a 4-
level signature with

� � . � 6 � . In particular, for a 2-level

10

signature, a verifier can first verify a message at level 1 of
2 using 0.42 ms processor time, and later increase to level 2
(of 2) by using 0.40 ms additional processor time.

4. Comparison with other Signature Schemes
In this section, we compare eFFS(128,1) to FFS(128,1)

as well as four other signature schemes available from
CryptoLib [8], namely: DSA [15], ElGamal [6], RSA [19],
and Rabin [17]. We compare their key and signature sizes,
and signing and verification times. Then, we compare their
signing and verification rates for 1024-byte packets when
each is used as the signature scheme in our flow signing
and verification procedures presented in Section 2. Exper-
iments were performed on a Pentium II 300 MHz machine
running Linux. Four different modulus sizes, 384, 512, 768,
and 1024 bits, were used in the comparison. (Note that it is
difficult to compare the security levels of different signature
schemes even if they use the same modulus size.)

4.1. Key and signature sizes

modulus size (bits)
384 512 768 1024

RSA 96 128 192 256
Rabin 96 128 192 256
DSA 136 168 232 296

ElGamal 144 192 288 384
FFS(128,1) 6192 8256 12384 16512

eFFS(128,1) 6192 8256 12384 16512
(a) Signing key size (bytes)

RSA 48 64 96 128
Rabin 48 64 96 128
DSA 164 212 308 404

ElGamal 144 192 288 384
FFS(128,1) 6192 8256 12384 16512

eFFS(128,1) 304 320 352 384
(b) Verification key size (bytes)

RSA 48 64 96 128
Rabin 48 64 96 128
DSA 40 40 40 40

ElGamal 96 128 192 256
FFS(128,1) 64 80 112 144

eFFS(128,1) 64 80 112 144
(c) Signature size (bytes)

Table 7. Signing key, verification key, and signature
sizes (bytes) of different signature schemes.

Table 7 shows the signing/verification key and signature
sizes. The signing keys are from 96 to 384 bytes in all
schemes except FFS and eFFS whose signing keys are much
larger, from 6,192 to 16,512 bytes. Note that a signing key
is private to a signer. We do not expect the relatively large

eFFS signing keys to pose a problem for sources/signers of
packets.15

In RSA and Rabin, verification keys are from 48 to 128
bytes. In DSA, ElGamal, and eFFS, verification keys are
slightly larger, from 144 to 404 bytes. Even for receivers
with limited resources, we believe that a verification key
as large as 400 bytes would not pose a problem. (Note that
without the small v-key extension, FFS verification keys are
as large as signing keys.)

The signature of DSA is the smallest and is 40 bytes for
all modulus sizes. For all of the other schemes, the signa-
tures are larger and about the same size, 48 to 256 bytes. In
particular, the signature sizes of eFFS and the popular RSA
are about the same.

4.2. Signing and verification times

Table 8 shows the signing and verification times for a
16-byte message (digest). DSA and ElGamal have been de-
signed to achieve efficient signing (e.g., for use in smart-
card applications), and RSA and Rabin have been designed
to achieve efficient verification. From Table 8, note that the
signing operations of DSA and ElGamal, with times from
3.9 to 18.9 ms, are much more efficient than those of RSA
and Rabin, with times from 6.2 to 95.9 ms. On the other
hand, the verification operations of RSA and Rabin, with
times from 0.14 to 1.14 ms, are much more efficient than
those of DSA and ElGamal, with times from 5.1 to 350.3
ms.

Note that the signing and verification operations of FFS
are both inefficient. However, eFFS has a signing operation
even more efficient than those of DSA and ElGamal, and a
verification operation as efficient as that of RSA. This com-
bination of the most efficient signing and highly efficient
verification makes eFFS the best choice for most applica-
tions.

4.3. Flow signing and verification rates

Table 9 shows the flow signing and verification rates
of our flow signing and verification procedures (for 1024-
byte packets, degree two tree chaining, block size sixteen,
and 100% of processor time of a Pentium II 300 MHz ma-
chine). Both DSA and ElGamal have low flow verification
rates, rendering them inappropriate for receivers with lim-
ited resources, such as personal digital assistants and low-
end notebook computers. Both RSA and Rabin have low
flow signing rates, rendering them inappropriate for real-
time generated flows, such as live video/audio applications.
By comparison, eFFS provides high flow signing rates suit-
able for real-time generated flows while its flow verification
rates are also very high.

15Such signing keys are indeed too large for small devices, such as
smartcards, but it is unlikely that these devices would be sources of packet
flows or multicasts.

11

modulus size (bits) modulus size (bits)
384 512 768 1024 384 512 768 1024

RSA 6.2 12.7 36.2 79.4 RSA 0.26 0.40 0.70 1.1
Rabin 11.3 19.5 47.5 95.9 Rabin 0.14 0.20 0.38 0.56
DSA 3.9 5.6 10.2 16.3 DSA 5.1 7.6 14.7 24.2

ElGamal 5.1 6.8 12.3 18.9 ElGamal 24.4 51.9 157.5 350.3
FFS(128,1) 8.8 13.7 22.9 38.5 FFS(128,1) 8.5 13.4 22.1 37.3

eFFS(128,1) 2.3 3.1 5.2 8.2 eFFS(128,1) 0.53 0.65 0.82 1.1
(a) Signing time (ms) (b) Verification time (ms)

Table 8. Signing and verifying times (ms) of different signature schemes.

modulus size (bits) modulus size (bits)
384 512 768 1024 384 512 768 1024

RSA 1940 1090 413 193 RSA 7480 7030 6060 5290
Rabin 1200 739 321 163 Rabin 7960 7610 7010 6430
DSA 2760 2140 1320 874 DSA 2270 1660 949 609

ElGamal 2320 1850 1140 749 ElGamal 600 295 99 45
FFS(128,1) 1550 1070 624 395 FFS(128,1) 1590 1150 633 419

eFFS(128,1) 3920 3140 2160 1610 eFFS(128,1) 6640 6370 5760 5250
(a) Flow signing rate (packets/sec) (b) Flow verification rate (packets/sec)

Table 9. Flow signing and verification rates (packets/sec) for 1024-byte packets, degree two tree chaining, and block
size sixteen.

5. Conclusions

We investigated the problem of signing/verifying delay-
sensitive packet flows to provide data authenticity, integrity,
and non-repudiation for Internet applications. We have de-
signed flow signing and verification procedures, based upon
a tree chaining technique, to meet the following require-
ments: (i) flow signing is efficient and, for real-time gen-
erated flows, delay-bounded, (ii) flow verification is effi-
cient (for receivers with limited resources), (iii) packets in
a flow are individually verifiable (for best-effort multicast
delivery), (iv) packet signatures are small (for a small com-
munication overhead), and (v) verification at a receiver is
adjustable to different security levels and can be carried out
incrementally (for receivers with limited resources).

We implemented our flow signing and verification pro-
cedures and performed experiments to compare different
chaining techniques. From experimental results, we rec-
ommend the use of degree two (binary) tree chaining since
it requires the smallest packet signature size (i.e., smallest
communication overhead) while its signing and verification
rates are comparable to the rates of other chaining tech-
niques. Our flow signing and verification procedures are
very efficient and achieve one to two orders of magnitude
improvement compared to the sign-each approach.

Since signed packets in our procedures are individually
verifiable, the procedures can be used to reduce the work-
load of any machine that sends out a large number of signed
packets to one or more destinations. There is no require-
ment that these packets belong to flows. However, for pack-
ets that belong to a flow, the workload of the flow’s re-

ceiver(s) is also reduced.
To further improve our procedures, we propose sev-

eral extensions to the Feige-Fiat-Shamir digital signature
scheme [3, 4] to speed up both the signing and verification
operations, as well as to allow adjustable and incremental
verification. The extended scheme, called eFFS, is com-
pared to four other digital signature schemes, RSA [19], Ra-
bin [17], DSA [15], and ElGamal [6], on the same comput-
ing platform (Pentium II 300 MHz machine running Linux).

The signing operation of eFFS is by far the most efficient
of all the schemes compared. The verification operation of
eFFS is as efficient as that of RSA (tie for a close second be-
hind the verification operation of Rabin). In addition to ef-
ficient signing and verification, we have extended the eFFS
scheme to allow a receiver to efficiently carry out adjustable
and incremental verification. Such a capability is useful for
large-scale multicast applications with a variety of receivers
including some with limited resources.

References
[1] Tony Ballardie. Scalable Multicast Key Distribution, RFC

1949, May 1996.
[2] Stephen E. Deering. Multicast Routing in Internetworks and

Extended LANs. In Proceedings of ACM SIGCOMM ’88,
August 1988.

[3] Uriel Feige, Amos Fiat, and Adi Shamir. Zero Knowledge
Proofs of Identity. In Proc. of the 19th Annual ACM Sympo-
sium on Theory of Computing, 1987.

[4] Amos Fiat and Adi Shamir. How to Prove Yourself: Prac-
tical Solutions to Identification and Signature Problems. In
Advances in Cryptology — CRYPTO ’86, pages 186–194,
1987.

12

[5] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven Mc-
Canne, and Lixia Zhang. A Reliable Multicast Framework
for Light-Weight Sessions and Application Level Framing.
In Proceedings of ACM SIGCOMM ’95, 1995.

[6] T. El Gamal. A Public-Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms. In Advances
in Cryptology — CRYPTO ’84. Springer-Verlag, 1985.

[7] Rosario Gennaro and Pankaj Rohatgi. How to Sign Digital
Streams. In Advances in Cryptology — CRYPTO ’97, 1997.

[8] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib:
cryptography in software. In Proceedings of USENIX: 4th
UNIX Security Symposium, October 1993.

[9] Leslie Lamport. Constructing digital signatures from a one-
way function. Technical Report CSL 98, SRI Intl., 1979.

[10] Ralph C. Merkle. A Digital Signature based on a Conven-
tional Encryption Function. In Advances in Cryptology —
CRYPTO ’87, 1987.

[11] Ralph C. Merkle. A Certified Digital Signature. In Advances
in Cryptology — CRYPTO ’89, 1989.

[12] Silvio Micali and Adi Shamir. An Improvement on the Fiat-
Shamir Identification and Signature Scheme. In Advances in
Cryptology — CRYPTO ’88, pages 244–247, 1990.

[13] Suvo Mittra. Iolus: A Framework for Scalable Secure Mul-
ticasting. In Proceedings of ACM SIGCOMM ’97, 1997.

[14] Suvo Mittra and Thomas Y.C. Woo. A Flow-Based Ap-
proach to Datagram Security. In Proceedings of ACM SIG-
COMM ’97, 1997.

[15] National Institute of Standards and Technology. Digital Sig-
nature Standard. NIST FIPS PUB 86, U.S. Department of
Commerce, May 1994.

[16] C. Partridge. Using the Flow Label Field in IPv6, RFC 1809,
June 1995.

[17] M.O. Rabin. Digitized signatures and public-key functions
as intractible as factorization. Technical Report LCS/TR-
212, MIT Laboratory for Computer Science, 1979.

[18] Ronald L. Rivest. The MD5 Message Digest Algorithm, RFC
1321, April 1992.

[19] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A
method for obtaining digital signatures and public key cryp-
tosystems. Communications of the ACM, 21(2):120–126,
1978.

[20] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam.
Secure Group Communications Using Key Graphs. In Pro-
ceedings of ACM SIGCOMM ’98, Vancouver, B.C., Septem-
ber 1998.

[21] L. Zhang, S.E. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A new resource ReSerVation Protocol. IEEE
Network Magazine, 9(5), 1993.

Appendix. Flow verification procedure

procedure flowverify ���
for each received packet

if the block signature �������	��
����� in the packet signature is new then
/* this is the first received packet in the block */
compute the packet digest;
compute each ancestor of the packet digest

as the message digest of its children;
let
����� be the computed block digest;
if (verify ��
���� ��� �������	��
������� = false) then

the packet is not verified
else

the packet is verified;
cache all computed nodes and their children as verified

endif
else /* this is not the first received packet in the block */

compute the packet digest;
if (packet digest has been cached) then

if (computed packet digest �� its cached value) then
the packet is not verified

else
the packet is verified

endif
else

compute all non-cached ancestors of the packet digest;
let �����3& be the highest node computed;
compute the parent of ���� & ;
if (computed parent �� its cached value) then

the packet is not verified
else

the packet is verified;
cache all computed nodes and their children as verified

endif
endif

endif
endfor

13

